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Supplemental Material, Figure 1 

Mechanisms controlling AC activity, showing probes for each step in the pathway:  isoproterenol 

for the βAR, glucagon for the glucagon receptor, NaF for the G-proteins, and forskolin for AC 

itself.  Both βARs and glucagon receptors enhance AC activity through the stimulatory G-

protein, Gs, whereas m2AChRs inhibit AC through mediation of the inhibitory protein, Gi. 

 



Supplemental Material, Table 1 

Adenylyl Cyclase Activities and Receptor Binding in Controls 

 PN30 PN60 PN100 

 Male Female Male Female Male Female 

Liver       

Basal ACa 3.1 ± 0.1 3.1 ± 0.1 4.0 ± 0.1 4.1 ± 0.2 3.2 ± 0.1 3.0 ± 0.1 

Isoproterenol-Stimulated ACa 4.8 ± 0.2 5.8 ± 0.2* 5.8 ± 0.1 6.3 ± 0.3 4.5 ± 0.2 4.6 ± 0.1 

Glucagon-Stimulated ACa 29 ± 1 28 ± 1 34 ± 1 31 ± 1* 30 ± 1 27 ± 1* 

NaF-Stimulated ACa 16.9 ± 0.5 16.9 ± 0.6 22.0 ± 1.1 21.5 ± 0.7 19.3 ± 0.4 18.8 ± 0.5 

Forskolin-Stimulated ACa 58 ± 4 68 ± 2 77 ± 3 69 ± 2 73 ± 3 67 ± 3 

βAR Bindingb 3.2 ± 0.1 3.5 ± 0.2 3.6 ± 0.2 4.3 ± 0.2 2.7 ± 0.1 3.2 ± 0.1* 

Heart       

Basal ACa 46 ± 1 44 ± 2 28 ± 1 29 ± 1 20 ± 1 23 ± 1* 

Isoproterenol-Stimulated ACa 95 ± 2 95 ± 3 62 ± 2 67 ± 3 46 ± 2 54 ± 2* 

Glucagon-Stimulated ACa 68 ± 2 68 ± 3 50 ± 2 50 ± 2 34 ± 2 40 ± 1* 

NaF-Stimulated ACa 129 ± 3 127 ± 5 89 ± 2 93 ± 4 78 ± 3 83 ± 3 

Forskolin-Stimulated ACa 803 ± 7 772 ± 22 646 ± 17 693 ± 24 554 ± 17 585 ± 16 

βAR Bindingb 11.1 ± 0.3 10.3 ± 0.3 8.0 ± 0.2 6.9 ± 0.3* 7.6 ± 0.4 7.3 ± 0.2 

m2AChR Bindingb 183 ± 4 182 ± 6 161 ± 7 152 ± 7 170 ± 6 188 ± 6* 

Cerebellum       

Basal ACa — — — — 166 ± 5 174 ± 4 

Isoproterenol-Stimulated ACa — — — — 220 ± 7 208 ± 5 

NaF-Stimulated ACa — — — — 212 ± 5 194 ± 5* 

Forskolin-Stimulated ACa — — — — 1138 ± 45 1202 ± 60 

βAR Bindingb — — — — 22.5 ± 0.4 22.4 ± 0.4 

Values are mean ± SE pooled across both sets of control cohorts (n=12 per sex at each age). 
apmol / min / mg protein; bfmol / mg protein; *significant difference between males and females 



In control rats, liver and heart AC activities both showed robust responses to stimulants 

(p<0.0001 for the main effect of each stimulant compared to basal activity) but the relative 

response of each stimulant differed among tissues and ages, and between sexes:  tissue × 

stimulant, p<0.0001; sex × stimulant, p<0.0005; age × stimulant, p<0.0001; tissue × age × 

stimulant, p<0.0001; age × sex × stimulant, p<0.06; tissue × age × sex × measure, p<0.007.  

Superimposed on the differences in response to stimulants, the overall temporal pattern of AC 

activity differed between liver and heart (tissue × age, p<0.0001; tissue × age × sex, p<0.005).  

As shown earlier (Navarro et al. 1991), liver AC declines sharply in the immediate postnatal 

period, whereas heart AC peaks in early adolescence and then declines; accordingly, here we saw 

an overall decrease in heart AC from adolescence to adulthood (p<0.0001 for the main effect of 

age), whereas liver AC showed a slight rise between PN30 and PN60 and a subsequent minor 

decline by PN100 (p<0.0001 for the main effect of age).  Both tissues showed age- and sex-

related differences in AC activity and/or stimulant responses, necessitating a point-by-point 

comparison of sex differences for each measure:  liver, p<0.06 for age × sex, p<0.003 for sex × 

stimulant, p<0.0001 for age × stimulant, p<0.007 for age × sex × stimulant; heart, p<0.08 for age 

× sex, p<0.0001 for age × stimulant.  Nevertheless, the individual sex differences were only 

sporadic, with the exception of the heart on PN100, where females showed significantly higher 

AC values than males (main effect of sex, p<0.03).  The major response differences between 

liver and heart reflected disparities in the relative effects of the various AC stimulants.  In the 

liver, glucagon produced a much larger response than did isoproterenol, whereas the opposite 

was true for the heart; this reflects the relatively greater physiologic importance of glucagon 

signals in the liver as compared to βAR signals in the heart.  Similarly, in the liver, glucagon 

produced a greater stimulatory response than did fluoride, reflecting the mixed involvement of 



both stimulation (Gs-related) and inhibition (Gi-related) for the latter agent; in the heart, 

isoproterenol produced a smaller signal than did fluoride.  Finally, in the cerebellum, we again 

saw robust stimulatory responses to isoproterenol, fluoride and forskolin (all at p<0.0001) but 

without any sex differences (no main effect of sex or sex × stimulant interaction). 

Because there were two control cohorts (controls for the DZN study, controls for the PRT 

study, each comprising 6 males and 6 females for each age point), the values were normalized 

and presented as a single set.  However, statistical comparisons of the effects of DZN and PRT 

were made only with the appropriately matched control cohort. 
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